Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass
نویسندگان
چکیده
The potential of fungal pretreatment to improve fermentable sugar yields from wheat straw or Miscanthus was investigated. We assessed 63 fungal strains including 53 white-rot and 10 brown-rot fungi belonging to the Basidiomycota phylum in an original 12 day small-scale solid-state fermentation (SSF) experiment using 24-well plates. This method offers the convenience of one-pot processing of samples from SSF to enzymatic hydrolysis. The comparison of the lignocellulolytic activity profiles of white-rot fungi and brown-rot fungi showed different behaviours. The hierarchical clustering according to glucose and reducing sugars released from each biomass after 72 h enzymatic hydrolysis splits the set of fungal strains into three groups: efficient, no-effect and detrimental-effect species. The efficient group contained 17 species belonging to seven white-rot genera and one brown-rot genus. The yield of sugar released increased significantly (max. 62%) compared with non-inoculated controls for both substrates.
منابع مشابه
Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system.
BACKGROUND The genome of Schizophyllum commune encodes a diverse repertoire of degradative enzymes for plant cell wall breakdown. Recent comparative genomics study suggests that this wood decayer likely has a mode of biodegradation distinct from the well-established white-rot/brown-rot models. However, much about the extracellular enzyme system secreted by S. commune during lignocellulose decon...
متن کاملDeciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses
Background Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. Resu...
متن کاملLignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium.
Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparing two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus g...
متن کاملInvestigating Lignocellulose in Cornstalk Pretreated with Trametes pubescens Cui 7571 to Improve Enzymatic Saccharification
This study investigated the degradation and enzymatic saccharification of cornstalk by white-rot and brown rot fungi. The fungal strains Trametes pubescens Cui 7571, Trametes velutina Dai 10149, and Antrodia wangii Cui 7568 were analyzed in solid-state fermentation cultures. Various extracellular enzyme activities were assessed to determine biochemical changes during the degradation process. Fo...
متن کاملEvaluation of Potential Fungal Species for the in situ Simultaneous Saccharification and Fermentation (SSF) of Cellulosic Material
Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen represented three major wood-rot molds; brown rot (Gloeophyllum trabeum), white rot (Phanerochaete chrysosporium) and soft rot (Trichoderma reesei). After solid state fermentation of the fungi on the filter paper for four days, the saccharified cellulose was then fermented to ethanol b...
متن کامل